Camera Ab Initio

Ravi Athale
Dennis Healy
MTO

Workshop Motivation

"Load Balancing" between Analog Optical and Digital Electronic Processing

"Load Balancing" between Analog Optical and Digital Electronic Processing

Today's Sensor Systems are feed-forward networks for transforming information in specialized stages

Raw sensor data:

Fast approximate solution of a high dimensional non linea optimization problem

systems Technology Office

Sensor System Optimization: A cartoon

Optimize Sensor Head

Take this as initial condition for optimizing processing

Try looking at the problem from another perspective...

Find Coordinates appropriate to the problem structure!

Empirical Theorem:

There often exist representations minimizing high order interactions

DARPA ISP PROGRAM

Components have overlapping and dynamically reconfigurable roles and full network connectivity. (LOAD BALANCING)

Makes "customized" measurements at physical layer under real-time feedback control from the exploitation and processing system. "20 Questions" "Information Theory Battleship"

Manages/Prioritizes data stream to affordable levels without discarding needed information

"Load Balancing" between Analog Optical and Digital Electronic Processing

Innovative Form, Fit, and Function

With distributed conformal imagers

- Single aperture
- •One look => One view
- Limited scalability
- Fixed functionality

- Multiple, independent apertures
- •One look => Many views
- Modular extendibility
- Programmable functionality
 - Programmable zoom
 - •3-D geometric information

Morning Events

7:30 - 8:30 a.m.	Registration and Continental Breakfast
	./

10:15 - 10:45 Break

12:15 - 1:15 Lunch

Re-Imagining the Camera

Purpose

- Explore prospects for DARPA-style revolution in Imaging Systems
- Determine best paths and critical steps

Potential enablers

- Systems Concepts
- Materials and Meta-Materials
- Microelectronics and MEMS
- Advanced Mathematical Processing Algorithms
- Advanced Exploitation Algorithms
- Modeling and Optimization for Rapid Prototyping

Collaborate in Blank Page conceptual design of Imagers

- New Form/Fit/Function
- Joint optimization/integration of Sensing,Processing,Exploitation
- Load Balancing

Virtual Design Teams

- Ab Initio designs
 - Integrated Design Teams
 - Optics, wave processing, devices, algorithms
 - Over-riding system perspective
 - Co-design, joint optimization of traditionally independent subsystems
 - Eye towards end uses
 - Innoivations in form, fit, function

Design Team Report/Outbrief

- 5-10 slides
- What is the system? (or systems)
- What are the new capabilities/attributes and the utility towards end use?
- What are the key technical challenges and what are the significant new enablers?

These are the questions we will need to answer:

DARPA Investment Criteria

- •What are you trying to accomplish?
- •How is it done now & with what limitations?
- •What is truly new in your approach that is likely to remove current limitations & improve performance? Quantify this advance?
- •Why do you believe your new approach can work? What is unknown?
- •If successful, what difference will your system make and to whom?
- •What are the near-term, mid-term, final exams or full scale applications required to prove your hypothesis? When will they be done?
- •What is the transition strategy?
- •How much will it cost?

